TED (15) – 6025	Reg. No	
(REVISION — 2015)	Signature	
	ATION IN ENGINEERING/TECHNO MERCIAL PRACTICE — OCTOBI	
INDUSTRIAL A	AUTOMATION AND MECHATRONICS	S
		[Time: 3 hours
	(Maximum marks: 100)	
	PART — A	
	(Maximum marks: 10)	
		Marks
I Answer all questions in one	or two sentences. Each question carries 2 mark	ks.
1. Define automation.		
2. Name any two mechatron	ics devices.	
3. Give the names of any tw	vo temperature sensors.	
4. Draw the symbol of a 4/2	2 solenoid operated DCV.	
5. Differentiate between micro	ro controller and micro processor.	$(5 \times 2 = 10)$
	PART — B	
	(Maximum marks: 30)	
II Answer any five of the follow	wing questions. Each question carries 6 marks	
1. List out the advantages of	f automation.	
2. Explain the term non-linear	arity error in sensors.	
3. Explain debouncing in me	echanical switches. What is its software solution	1?
4. Explain the working of ar	n electric relay with a neat sketch.	
5. Explain with a neat sketch	h, the working of a vane motor.	
6. Draw the block diagram	showing the architecture of a PLC.	

7. What are the factors to be considered for the selection of a PLC?

[160]

 $(5 \times 6 = 30)$

[P.T.O.

Marks PART — C (Maximum marks: 60) (Answer one full question from each unit. Each full question carries 15 marks.) Unit - I (a) Differentiate between open loop and closed loop control system. 8 (b) Explain the advantages and disadvantages of mechatronics system. 7 . OR (a) Differentiate between fixed and programmable automation. IV (b) Distinguish between traditional and mechatronics design with suitable example. 7 Unit - II (a) Explain how a linear variable differential transformer (LVDT) be used for measuring displacements. 8 (b) Differentiate between the following dynamic characteristics of a sensor. (i) Response time (ii) Time constant 7 OR (a) Explain the working of a turbine flow meter with a suitable sketch. 8 (b) List out the factors to be considered while selecting a suitable sensor. 7 UNIT -- III (a) Draw the symbol of a pressure sequence valve and explain how it can be used VIIfor sequencing two double acting cylinders. 8 (b) Explain the working of a thyristor (SCR) as a solid state switch. Also draw its voltage current characteristics. 7 OR (a) Explain with a block diagram, the working of a hydraulic actuation system. VIII Also draw the circuit with symbols. 8 (b) Differentiate between variable reluctance and permanent magnet stepper motor. 7 UNIT - IV (a) Explain any four fault detection techniques used in measurement, control and data IX communication systems. 8 (b) Explain the use of timers in PLC programming with suitable examples. 7 OR (a) Compare the mechanical and mechatronics design solutions for a timed switch. X 8 (b) Write a ladder program to operate 3 output lamps from the following data. Three input switches, A, B and C are connected to the PLC. The output lamp 1 should switch on, if there is at least two inputs. The lamp 2 should switch on only, if all the three inputs are switched on. If all the input switches are in off, position lamp 3 should be switched on.

7