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From equation (i), it is clear that B.M. at any section 18 proportion: the distance of
the section from the free end.

Atx=0ie,atB, BM.=0

Atx=Lie,atA, BM.=WxL

Hence B.M. follows the straight line law. The
point A, take AC = W x L in the downward direction.

The shear force and bending moment diagrams
a cantilever, will be drawn in the similar manner.

Problem 6.1, A cantilever beam of length 2 m carries the poin loads a5:shawn iy

B.M. diagram is shown in Fig. 6.14 Gk
Join point B to C.
for several concentrated loads acting

Fig. 6.15. Draw the shear force and B.M. diagrams for the cantilever beam.
4 Sol. Given :
v
¥y Refer to Fig. 6.15.
\]
3 300N 500N BOO N

(a)

f!;rlr:z)lq
T E EH 300N %
a
(6)  1600NE F 500 N E
4 ¥ 1T
4 | 4800N
3 ¥
A I8 Ic D
Base line
Base line
1B Ic I
T ~
640
(l:] Nm
2350 Nm
l 1550 Nm
Fig. 6.15

shear force between B and A remains cg;
different points will be as given below : nstant and equal to 1600 N, Hence the shear force 8¢

ING MOMENT
GE AND BEND
s 241

S.F-atp’ FD=+800N
sF.atCr F =+ 800+ 500 =+ 1300 N
gF.atB Fy = + 800 + 500 + 300 = 1600 N

g e, Fy=+ 1600 N.
The shear force, diagram is shown in Fig. 6.15 () which is drawn as :
Draw 2 horizontal line AD as base line. On the base line mark the points B and C bel
he point loads. Take the ordmate DE =800 N in the upward direction. Draw a line EF paralri::
"D, The point F is verlflcally _above C. Take vertical line FG = 500 N. Through G, draw a
to£- el line GH in which point H is vertically above B. Draw vertical line HI = 300 N.
From J, draw 8 horizontal line 1J. The point oJ is vertically above A. This completes the shear

force diagram.
Bending Moment Diagram
The bending moment at D is zero:
(i) The bending moment at any section between C and D af a distancex and D is given by,
M_ = - 800 x x which follows a straight line law.

At C, the value of x = 0.8 m.
B.M.atC, M, =-800x 0.8 =-640 Nm.
(ii) The B.M. at any section between B and C at a distance x from D is given by
(At C,x = 0.8 and at B, x = 0.8 + 0.7 = 1.5 m. Hence here x varies from 0.8 to 1.5).
M, = - 800 x — 500 (x - 0.8)
Bending moment between B and C also varies by a straight line law.
B.M. at B is obtained by substituting x = 1.5 m in equation (i),
: M, =800 x 1.5~ 500 (1.5 - 0.8)
=— 1200 - 350 = — 1550 Nm.
(iii) The B.M. at any section between A and B at a distance x from D is given by
(AtB,x = 1.5 and at A, x = 2.0 m. Hence here x varies from 1.5m to 2.0 m)
M = — 800 x — 500 (x - 0.8) - 300 (x - 1.5) .(E0)

x

Bending moment between A and B varies by a straight line law.

B.M. at A is obtained by substituting x = 2.0 m in equation (if),

: Mﬂ=—800x2—500{2—0.3)—300(2—1.5)
= — 800 x 2500 x 1.2 - 300 x 0.5

—-1600—600—150=--2350Nm.

(@)

Hence the bending moments at different points will be as given below :
M,=0
M c =- 640 Nm
M, =- 1550 Nm
e M, = - 2850 Nm.
The bending moment diagram is shown in Fig. 6.15 (c) which is drawn as.
and mark the points B and C on this line. Take

vergs_Draw  horizontal line AD as a base line
Jertical lines CC' = 640 Nm, BB' = 1550 Nm an
oin points D, C', B’ and A’ by straight lines. This completes the

d AA’ = 2350 Nm in the downward direction.
bending moment diagram.



R

according 0 the parabolic ;‘-’:F\
- Froy,

ies
The equation (i) shows that the B.M. van

equation (i), we have
At B, x = 0 hence
At A, x = 2 m hence :
Now the bending moment diagram 18 drawn
AA' = 10 kNm and points A’ and B are joined by & p
Problem 6.4. A cantilever of length 2 m car™! s 5:’3 poad
run over the whole length and a point load of 2N 010
the S.F. and B.M. diagrams for the cantilever.

_ 10 kN/m

as shown in Fig. 6.18 (¢). In this djagl'am
arabﬂlic curve. y
uniformly distributed load of 1.5 kN
ceof0.5m from the free end. Dra::

MA=—{3X

Sol. Given :

Length, L=2m

UDL, w = 1.5 kN/m run
Point load, W=2kN

Distance of point load from free end=05m

Refer to Fig. 6.19.
2kN
C

1.5 kN/m

(a)

— 15m ——— ¢ 0.5m —¥

AN

—— 2
F

. Fig. 6.19
Shear Force Diagram
(¢) Consider any section betw
force at the section is given by, een C and B at a distance x from the free end. The she%"
Fx =+ wx .
(+ve sign is due to down"{"'d
=15xx - force on right Portio®

0

HeAR FUT

V
equation (1), ¥ varies from 0 to 0.5. The equation (i i
- nt line law between B and C. equation (i) shows that shear force varies by

alg
SSt‘r AtB'xz{)hence FB=1_5x0=0
AtC *= 0.5 hence Fr=15x05=0.75kN

consider any section between A and C at a distance x from free end B. The

(ii) Now B
hear force at the section is given by
8
F =+wx+2kN (+ve sign is due to downward force
on right portion of the section)
=15c+2 ..(i0)
aation (ii), x varies from 0.5 to 2.0. The equation (ii) also shows that shear force

In eq
a straight line law between A and C.

Fo= 1.5x0.5+2=2.75kN

At A, x = 2.0 hence F,=15x20+2=5.0kN

Now draw the shear force diagram as shown in Fig. 6.19 (b) in which CD = 0.75 kN,
pE =2.0kNor CE = 2.75 kN and AF = 5.0 kN. The point B is joined to point D by a straight
line whereas the point E is also joined to point F by a straight line.

Bending Moment Diagram
(i) The bending moment at any sec
end B is given by

varies by
At C, x = 0.5 hence

tion between C and B at a distance x from the free

M, =- (wx) . X

2
=—(1.5xx). ;. ¢+ w=1.5kN/m)
D)

=— 0.75x%
section the moment

(The bending moment will be negative as for the right portion of the

at the section is clockwise).

In equation (iii), x varies from O to
C and B by a parabolic law.

At B, x = 0 hence MB=—0.75x0=0

ALC. 5= 05 lisnoe M- U5 050 == 01575 KNG

(ii) The bending moment at any section between A and C at a distance x from the free

end B is given by

0.5. Equation (iii) shows that B.M. varies between

—(wx). %—2(:— 0.5)=-(1.5xx). g—z(x- 0.5)
¢+ w=15kN/m)
(iv)

M, =

=_0.75x2 - 2(x - 0.5)
In equation (iv), ¥ varies from 0.5 to 2.0. Equation (iv) shows that B.M. varies by a
parabolic law between A and C.
At C, x = 0.5 hence M=~ 0.75 x 0.5 - 2(0.5 - 0.5) = - 0.1875 kN/m
At A, x = 2.0 hence M, =- 0.75 x 22 - 2(2.0- 0.5) kNm =-3.0- 3.0=- 6.0 kNm
Fig. 6.19 (c). In this diagram

: Now the bending moment diagram is drawn as shown in 1
line CC = 0,1875 and AA’ = 6.0. The points A’, C' and B are on parabolic curves.
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The values of B.M. at different points are :
w.L w.0 _
AtA,x=Ohence M,=—3—" -—2—--0
At B, x = L hence M3=w—é£.L—£;—.L2-0
2 2 I? w. L2
L il L a L f”_-_é__w' 2
AtC.:=—2~hence Mc=—2—.a--—2-.(a-) 1 8 3

2
Thus the B.M. increases according to parabolic law from zero at Ato + E—aé— at the
middle point of the beam and from this value the B.M. decreases to zero at B accordin,
; g to the
parabolic law.
Now the B.M. diagram is drawn as shown in Fig. 6.27 (c).

Problem 6.9. Draw the shear force and bending moment diagram for a simply supported
of length 9 m and carrying a uniformly distributed load of 10 kN/m for a distance of 6 p,

the left end. Also calculate the maximum B.M. on the section.
Sol. First calculate reactions R, and Rp.

10 kN/m
C
AI— _ : B
(a) H‘ti Bm :‘! T .
| nd 9m RB
40kN 20 kN
&
® 3

(c)

D
BM. diagram

: Fig. 6.28
Taking moments of the forces about 4, we get

Ryx9=10x6x 0 -
5 =180

180
Ry= 2% =20ky

R, = Total )
0adonbeam-R8=10x6—20=40kN

£aR FORCE AND BENDING MOMENT
259
pear Force Diagram
Consider any section at a distance x from A
gection is given by, between A and C. The shear force at the
Fx=+RA_10x=+4D—10x @

Equation () shows that shear force varies by a straight line law between A and C
AtA)x:Ohence F‘,‘=+4D—0=40kN -
At C, x = 6 m hence Fo=+40-10x6=-20kN

The shear force at Ais + 40 kN and at C is — 20 kN. Also shear force between A and C
varies by 2 s!;ralght line. This means that somewhere between A and C, the shear force is zero.
Let the S.F. is zero at x metre from A. Then substituting the value of S.F. (i.e., F,) equal to zero

in equation (i), we get

0=40-10x
40
=—— =4
AT

Hence shear force is zero at a distance 4 m from A.

The shear force is constant between C and B. This equal to - 20 kN.

Now the shear force diagram is drawn as shown in Fig. 6.28 (b). In the shear force
disgram, distance AD = 4 m. The point D is at a distance 4 m from A.

B.M. Diagram
The B.M. at any section between A and C at a distance x from A is given by,

M,=R,xx-10.x. 7 =40x- 5 i)

Equation (ii) shows that B.M. varies according to parabolic law between A and €.
At A, x = 0 hence MA=4ﬂx0—5x0=0

At C, x = 6 m hence MC=40x6-5x62=240—180=+60kNm

At D, x = 4 m hence MD=4Ox4—5><42=160-BO=+80kNm

The bending moment between C and B varies according to linear law.

B.M. at B is zero whereas at C is 60 kNm.
The bending moment diagram is drawn as shown in Fig. 6.28 (c).

Maximum Bending Moment
The B.M. is maximum at a point where shear force changes sign. This means that the

point where shear force becomes zero from positive value to the negative or vice-versa, the
B.M. at that point will be maximum. From the shear force diagram, we know that at point D,
ing its sign. Hence B.M. is maximum at point D. But the

the shear force is zero after changin
B.M. at D is + 80 kNm.

Max. BM. = + 80 kN. Ans.
d B.M. diagrams for a simply supported beam of

Pro . the shear force an
blem 6.10. Draw fi d load of 10 kN/m for a distance of 4 m as shown

length 8 m and carrying @ uniformly distribute
in Fig. 6.29.
Sol. First calculate the reactions R, and Ry
Taking moments of the forces about A, we get

4
Rﬂx8=10x4x(l+§]=120

=



—

Point of Contraflexure
This point will be between A and B whe :
at any section at a distance x from A between A and B is gIv
M, =3x-x?
Equation M, to zero for point of contraflexure, we get
0=38x-x*=x(3~-%)
o 3-x=0

re B.M. is zero after changing its sign. Byt B
en by equation (iii) ag i

(-~ x cannot be zero as B.M, jg not
changing sign at this Point)

o x=3
Hence point of contraflexure will be at a distance of 3 m from A.

Problem 6.15. Draw the S.F. and B.M. diagrams for the avgrhanging beam carrying
uniformly distributed load of 2 kN/m over the entire length and a point load of 2 kN as shoyp,

in Fig. 6.36. Locate the point of contraflexure.
Sol. First calculate the reactions R, and Ry.
Taking moments of all forces about A, we get
Ryx4=2x6x3+2x6=36+12=48

R =?=12m

and RA=Tota.lload-R3=(2x6+2}—12=2kN \
/
2 kN/m 2kN
A
B C
(@) 2 - g I ig |
= —>

+ 1.

(c) LILLELLE 1::2:;:4 3 B . ¥
A 5 N T g rrrrrr sy C
——2m——| it T

8.0

BM. diagram

Fig, 6.36

(i)

AtA x= 0 hence
At B, x = 4 hence

Fy=2-2x0=2kN
The SF. between A and B varies according to straight line law. At 4, S.F. is positive

ond at B. 8.F. is negative. Hence between A and B . : v
;tlaltained by substituting F, = 0 in equation (;). » S.F. is zero. The point of zero S.F. is

0=2-2¢ or “;:m

The S.F. is zero at point D. Hence distance of D from A is 1 m.
(ii) The S.F. at any section between B and C at a distance x from 4 is given by,
Fx=+RA_2X4+RB_2(x—4}
=2-8+12-2(x-4)=6-2(x-4) i)
AtB,x=4hence Fp=6-24-4)=+6kN
AtC,x=6hence F,=6-26-4)=6-4=2kN
The S.F. diagram is drawn as shown in Fig. 6.36 (b).

BM, Diagram

B.M. at A is zero
(i} B.M. at any section between A and B at a distance x from A is given by,

M, =Ryxz-2xxx ) =2-x - Aii)

The above equation shows that the B.M. between A and B varies according to parabolic
law.

AtA,x=0hence M,=0

AtB,x =4 hence My=2x4-4*=-8kNm

Max. B.M. is at D where S.F. is zero after changing sign

AtD, x=1hence M,=2x1-1"=1kNm . ‘
The B.M. at C is zero. The B.M. also varies between B and C according to parabolic law.

Now the B.M. diagram is drawn as shown in Fig. 6.36 (c).

Point of ¢ o
OTfhi: ':;‘:fe:‘: E between A and B, where B.M. is zero after changing its sign. The

distance of E from A is obtained by putting M, =0in equation (iii).
0=2;..;==x(2-x)
2-x=0
. KRB hich are 8
is Si rted at two supporis which are 5 m
Problem 6.16. A beam of length 12 m;fﬁ’:ﬂ .::;}‘_‘p; 6.37. The beam carries a concen-

apa}‘f’ wltk e) 2 m on mch ,. i ms.
rated Jogq ;‘;‘;ggg’?’;{ ef;h ond. Draw S.F. and B.M. diagra



Columns Mﬂ

19.1. INTRODUCTION ¢ which is subjected tq axi
ure! - R N —
Column or strut is defined as a member of E”sgtlif:él and both of its ends are ﬁ":j

compressive load, If the member of the structr® 18 ¥25 er som as coliumm, fof exaimy)
rigidly while subjected to axial compressive load, the me?ﬂ,_?f the structure is not vertica] i
2 E.{féftical;mﬁ‘iﬁar between the roof and floor. 1 2 memb‘erk{;lbwn as strut. Examples of Bt:unf:}
one or both of its ends are mnggq or pin joigpgith_ par 18 Ao
are : connecting rods, piston rods etc.

19.2. FAILURE OF A COLUMN |
ne of the following stresses set up in

The failure of a column takes place due to the anyo
the columns :
(¢) Direct compressive stresses,
(z2) Buckling stresses, and
(iii) Combined of direct compressive and buckling stresses.
19.2.1. Failure of a Short Column. A short column of uniform cross'-sectional aread, |
subjected to an axial compressive load P, is shown in Fig. 19.1. The compressive stress induceq

is given by P
P
oE X :
If the compressive load on the short column is gradually increased, a '
stage will reach when the column will be on the point of failure by crushing.
The stress induced in the column corresponding to this load is known as crush-
ing stress and the load is called crushing load.
Let P, = Crushing load,
o, = Crushing stress, and
A = Area of cross-section.
Then o,= % i Ip
All short columns fail due to crushing, Fig. 19.1
_ 19.2.2. Failure of a Long Column. A long co] : ;
of length/, subjected to an axial compressive loang isu:;;\?viu'm?}m cross—sectlonal'area o
long column if the length of the e i ar; ¥nin Fig. 19..2. A column is known as
e erushing o 1 PArison to its lateral dimensions, is very large.

Such columns do not fail by CI'I.IShi__I}g 31213?: ut also by ben ding (also »Eﬁamucmﬁs ghown
e — . ) DL LR s 5

———
—



;

-

' Fig' : ,. ST G v .

in 11" itical just or crippling | Imn just buckles, i

lﬂa,d ol C o .09?_7'1‘he buckline 25, 18 known as buckli

0= d for along column. Actually the i?&ihicm** load is less .the"CJ mg_'

11981928 s for sh of buckli
a  whereas fors ort columns the valye of bucllljiklilgnlizl;?ﬁd foxi long columns
: 18 relatively high.

is 10 i
: Refer to Flg. 19.2.

Let ! =Length of along column

P = Load (compressi

ve) at which
A= gdmss-sectiﬂnal area of thecco::IIIZCOI
e = Maxim 1 -

um bending of the column at the centre

umn has just buckled

o, = Stress due to direct load = L
A

Pxe

g, = Stre i
b ss due to bending at the centre of the column =

7 = Section modulus about the axis of bendin Z/
The extreme stresses on the mid-section are gv b,

Maximum stress = g, + 0, il

and Minimum stress = ¢, — 0.

The column will fail when maximum stress (i.e., g, + o) is more than the crushing

stress - Bu:t:le :::: Olglong columns, the direct compressive stresses are negligible as compared
to buc . Hence very long columns are subjected to buckling stresses only.

ASSUMPTIONS MADE IN THE EULER’S COLUMN THEORY

The following assumptions are made in the Euler’s column theory :

1. The column is initially perfectly straight and the load is applied axially.

9. The cross-section of the column is uniform throughout its length.

3. The column material is perfectly elastic, homogeneous and isotropic and obeys Hooke’s

where

#19.3.

4. The length of the column is very large as compared to its lateral dimensions.
5 The direct stress is very small as compared to the bending stress.

6. The column will fail by buckling alone.
7 The self-weight of column is negligible.
LONG COLUMNS
due to direct Joad is very small in comparison with

f long columns take place entirely due to buck-
the columns are important :

19.4. END CONDITIONS FOR

In case of long columns, the stres‘s
the stress due to buckling. Hence the failure o h
f end conditions of

ling (or bending). The following four types © .
1. Both the ends of the column areé hinged (cr pinned).
2. One encl‘l is fixed and the other end is free.

3 Both the ends of the column are ﬁzfed.
4. One end is fixed and the other 15 pinned.

F hinged end the defl 0. For a fixed end the deflection and slope are zero.
or a hinge ;

ection is zer

For a free end the deflection is not zero-



19.9. EFFECTIVE LENGTH (OR EQUIVALENT LENGTH) OF A COLUMN

The effective length of a given column with given end coqghff_ions is the length of an
ent column of the same material and cross-section with hinged ends, and having the

equivalent n of the same m ss-section with k T
value of the crippling load equal to that of the given column. Effective length is also called
equivalent length, EV T R

Let L, = Effective length of a column,
I = Actual length of the column, and
P = Crippling load for the column.
Then the crippling load for any type of end condition is given by
n*El

> ..(19.5

P =




b

End conditions

| other is hinged

. Crippling load in terms of Relation between
S.No of column effective length
Actual length Effective length and actual length
2 2
1. | Both ends hinged = fl n”El L =1
l L 2 e
e e
2 2
2. | One end is fixed nﬂgl nLEzI L,=2I
and other is free '
4n2El n2El l
3. | Both ends fixed 2 L? E = 5
2 2
EI
One end fixed and 25{%—2—— iz Ezl I - l
2 =7

There are two values of moment of inertia i. e,I and I .

Value g;htf}!l value of I (moment of inertia) in the.above ve expressions shoul

Wxﬂmm of inertia as the column will tend to bend j

10 o

d be taken as as the e least

ast
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RANKINE: FORMULA L L . i
P P Fg
P = Crippling load by Rankine’s formula
P = Crushing load = o, X A
o, = Ultimate crushing stress
A = Area of cross-section
P, = Crippling load by Euler’s formula

where

2
= KLEI , in which L, = Effective length

For a given column material the crushing stress o, is a constant. Hel_ice the crushing
will also be constant for a given cross-sectional area of the

load P, (which is equal to o x A)
column. In equation (i), P, is constant and hence value of P depends upon the value of P But
for a given column material and given cross-sectional area, the value of Py depends upon the

effective length of the column.
(i) If the column is a short, which means the value of L, is small, then the value of

1
P will be large. Hence the value of 7o will be small enough and is negligible as compared to
E

1 1
the value of 7. Neglecting the value of P in equation (i), we get
c E

e T
PR or P— P,

H.'mm the crippling load by Rankine’s formula for a short column is approximately equal
to crushing load. In Art. 19.2.1 also we have seen that short columns fail due to crushing.

(i) If the column is long, which means the value of L, is large. Then the value of Py will

L (g
be small and the value of F; will be large enough compared with FJL . Hence the value of I’!—
C c

may be neglected in equation (i).

1_1
P P or PPy

Hence the crippling load by Rankine's fi ! :
to crippling load given by Euler’s fonnula,e s formula for long columns is approximately equal

1 1

Hence th ine’ e i
ence . e Rankine’s formula P =P, * B, Eves satisfactory results for all lengths of
columns, ranging from short to long columns, .
Now the Rankine’s formula is _}1)_ =1 PO L0
: i Boi By B P
Taking reciprocal to both sides, we have 5 i

P=£Q_'_P;E__= PC
Pe+B " B

« Fbg
(Dividing the numerator and denominator by 7’ s

JINS AND STRUTS
oY 837
s

= O, x A
n® EI
L}
But I = Ak?, where k = least radius of gyration
The above equation becomes as

T8 .(19.9)

(4] - 2
where @ = —3 EE and is known as Rankine’s constant.
] 4

The equation (19.9) gives crippling load by Rankine's formula. As the Rankine formula
is empirical formula, the value of ‘a’ is taken from the results of the experiments and is not

calculated from the values of o, and E.
The values of o, and a for different columns material are given below in Table 19.2.

TABLE 19.2
S. No. Material o, in N/ mm?2 a
1
1. Wrought Iron 250 3000
1
2. Cast Iron 550 1600
1
3. Mild Steel 320 7500
1
4. Timber 50 750

@‘Prnblam 19.18. The external and internal diameter of a hollow cast iron column are
of this column is 3 m and both of its ends are fixed,

Scm and 4 cm respectively. If the length
determine the crip;ling load using Rankine’s formula. Take the values of o, =550 N/mm? and

S }_é%ﬁ in Rankine'’s formula.
Sol. Given :
External dia., D = 5 cm
Internal dia., d =4 cm
Area, A= -:— (5% - 42) = 2.25% cm? = 2257 x 10° mm? = 22657 mm?
(54— 44] = 5.7656 x cm*

Moment of Inertia, I= 7
56}1 x 10‘ mm = 576563 mm‘

b1
=5.76
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. Least radius of gyration,

e JZ . 157656" = 25.625 mm
A 226n

Length of column, [ = 3 m = 3000 mm

As both the ends are fixed,
[ 3000
-, Effective length, L, = et ke 1500 mm
Crushing stress, o, = 5560 N/mm?
< J.5
Rankine's constant, a = 1600
Let P = Crippling load by Rankine’s formula
Using equation (19.9), we have
Ly e 550 x 225n
) 1+[&)2 1+—1 x( 1500 Jz
k 1600 \ 25625
22
- 550x225% _ 193750 N. Aws.

3.1415

'@— Problem 18.14. A hollow cylindrical cast iron column is 4 m long with both ends fixed.
Determine the minimum diameter of the column if it has to carry a safe load of 250 kN with a
factor of safety of 5. Take the internal diameter as 0.8 times the external diameter. Take

a, =550 N/mm? and a =

1600 in Rankine’s formula. (AMIE, Winter 1983)

Sol. Given :
Length of column, / = 4 m = 4000 mm
End conditions = Both ends fixed

Effective length, L, = % = 4(;00 = 2000 mm
Safe load, = 250 kN
Factor of safety, =p
Let External dia., =D
Internal dia. =0.8xD
Crushing stress, 0, = 550 N/mm?

[} 1 . sy

Value of ‘a = 1600 in Rankine's formula

Now factor of safety = C.0PPling load or 5 Cirippling load
o Safe load % 250
Crippling load, P =5 x 250 = 1250 kN = 1250000 N

Area of column, A= g [D? - (0.8DY?)

L1 n
=ZID2—0.64D2]=EX0.3602=RK0.0992
Moment of Inertia, = — [D4— =
nertia 84 [D* - (0.8D4) = 61 [D* - 0.4096D%

UMNS AND STRUTS

v — 839
T
. =‘6_JXO'5904)‘D4=0-009225X:[XD‘
But I = A x k*, where k is radiug of gyration
A\ 2x0m,p7 =032
Now using equation (19.9), P= __ % -4
1+afLe i
20
550 0.09 D?
i 1250000 = ———“-"_"___i (+ A=nx0.09D?
il [ 2000 ]
1600 (032D
1250000 D2 D*xD?
550 xnx000 = | 24d1d " 80%8=Tr iy
D2

or 8038D2 + 8038 x 24414 = D4 or D4 - 8038D? - 8038 x 24414 =0
or D*— 8038 D? - 196239700 = 0.
The above equations is a quadratic equation in D?, The solution is

_ 8038+ /80387 + 4 x 1x 196239700
” 2

D2

Roots = %

4:@]

8038 = /646094 + 784958800 _ 8038 = 29147
= a 2
2

_ 8088+ 29147 1y ther root is not possible)
= - '

= 18592.5 ]I!l:l:l:l2
D = J185925 = 136.3 mm

. External diameter = 136.3 mm-
= Ans.
Internal diameter = 0.8 x 1363 = 108 mm.

:reular cross-section of 5 cm diameter. One
Problem 19.15. A 1.5 m long "‘dumg:::; ;;?‘uhn and other end is free. Taking factor

of the ends of the column is fized in directo!
of safety as 3, calculate the safe load using : 1

=560 N/mm® and @ = 7en0 for pinned ends.

(@) Rankine’s formula, take yield stress: O On——
(b) Euler’s formula, Young's modulus pr = (AMIE, Summer 1976)
Sol. Given :

Length, [ =16m= 1500 mm

Diameter, d = 5 cm
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Problem 19.18. A hollow cast iron cah.cm
side diameter, 8 m long has both ends fixed. Itis s

- __ﬂ
n 200 mm outside diameter and 150 m;, &
ubjected to an axial compressive load. Tq king

= i , determine the safe Rankine load,

a factor of safety as 6, 0==560mem2,a 7600

Sol. Given :

(AMIE, Summer 1990)

External dia., D = 200 mm

Internal dia., d = 150 mm

Length, / = 8 m = 8000 mm

End conditions = Both the ends are fixed
Crushing stress, o, = 560 N/mm?

1
Rankine’s constant,a = ——

Safety factor = 6

Moment of inertia,

1600

L Foord oy 4_ 1504
I= 64 (D4 -dY 61 (2004 - 150%)
T

64 (1600000000 — 506250000) = 53689000 mm*

’I ’53689000
Least radi i =gl S g (=i
radius of gyration, & 5 13744 62.5 mm

Let P = Crippling load by Rankine formula.

Using equation (19.9), P =

g.xA

where L, = Effective length = — = —— = 4000 mm

.. Safe load

g

2 2

1 ( 4000)?
+ x| ——
1600 62.5]

_ 7696640 7696640
= 1+256 = gpg = 2161977 N = 2161.977 kN

_ Cripplingload 9167977
~ Factorof safety = — g

= 360.3295 kN. Ans.

Problem 19.19. A hollow C.I. column whose outside diameter is 200 mm has a thick-

§ -

qnessof20mm.1tw4.5mbngandisﬁxedatbothend.s ine’
g ? . Calculate the load by Rankine$
« formula using a factor of safety of 4. Caleulate the slenderness ratio and :}g‘iatio O}I%'“k” s and

Rankine’s eritical loads. Take o, =560N/mmé, q =

10 N/mm?2.

1
1600 '™ Rankine’s formula and E = 9.4%
(AMIE, Winter 1979 ; Annamalai University, 1997

GOLUMNS AND STRUTS

845

Sol. Given :
Outside diameter, D = 200 mm,
Thickness, ¢ = 20 mm
Inside diameter, d=D-2x¢=200- 3 x 2 = 160 mm

e n
Area, =4 DP-d)= 7 (20021602 = 11310 mm?

tofinertia, 1= x
Moment of inertia, I 64 (DA - d¥) = = (2001 - 160*) = 46370000 mm*
And the least radius of gyration,

24 ‘F_ _ [46370000
A T
Length of column, ! = 4.5 m = 4500 mm
End condition = Both the ends are fixed

Effective length, L, = — = —— = 2250 mm

Factor of safety = 4
Value of o, = 5560 N/mm?®

Value ofa= ij

Value of E = 9.4 x 10* N/mm?,
(i) Slenderness ratio
Using equation (19.8), we get
Slenderness ratio = % = 4—?‘2—0 = 70.30. Ans.
(ii) Safe load by Rarkine'’s formula
Let P = Crippling load by Rankine’s formula
o, xA _ 550x11310 _as1100N

LYo o 1 {90V
1+a( %) e (6t )
Crippling load 3511000

Safe load = Factor of safety = 4
(iii) Ratio of Euler’s and Rankine’s critical loads
Let Py = Euler’s critical load

Euler’s critical load is given by equation (19.5)

x? EI  n®x94x10* x46370000 _ o 00n0
2

Using equation (19.9), P =

=8777TN. Ans.

m 2250°

Euler’ s critical load P

Rankine's critical load P

8497700 (-~ P=3511000 N)

= 3511000
=242 Ans.
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3 x 2000 x 1000
_ 3x2000 x 1000
or 100= o 50 x 10°

xb 100 x 1000* =119 mm. Ans,
t 4x21x10°x10

Fig. 16.13. As the helix '

———

TORSION OF SHAFTS AND SPRINGS
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Expression for deflection of spring
Now length of one coil = D or 255

Total length of the wire = Length of one coil x No. of coils or ! = 2rR x n.

As the every section of the wire is subjected to torsion, hence the strain energy stored by
the spring due to torsion is given by equation (16.20).

Strain energy stored by the spring,
Pl L2
10" olume = ic " Volume

2
- (STEY L (2 auma)

725

[ T= I:ZR and Volume = -E—dz = Total length of Wire)
_ 32w°R? R < 32W°R®.n

= 7 n=—"— ...(16.25)
Cd cd*
Work done on the spring = Average load x Deflection
=1Wx3d (. Deflection = &)
Equating the work done on spring to the energy stored, we get
32W2R% . n
T W= B o
64WRn
e i 8= —‘Ed‘_____ ...(16.26)
Expression for stiffness of spring
The stiffness of spring,
s = Load per unit deflection
W w cd*
=L - ..(16.27
8 64.WR*.n 64.R°.n ’
Ccdt

Note. The solid length of the spring means the distance between the coils when the coils are
touching each other. There is no gap between the coils. The solid length is given by
Solid length = Number of coils x Dia. of wire = n x d
. Problem 16.35. A closely coiled helical spring is to carry a load of 500 N. Its mean
coil diameter is to be 10 times that of the wire diameter. Calculate these diameters if the
Mmaximum shear stress in the material of the spring is to be 80 N/mm?2.

(AMIE, Summer 1985)

---(16.28)

Sol. Given :
Load on spring, W=500N
Max, shear stress, = 80 N/mm?
Let d = Diameter of wire
D = Mean diameter of coil
HA D=10d.

16WR

Using equation (16.24), <= per |
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Loadonspring 200 _ o5 N Ane

mm = 3.8096 cm

pae L [_981_ _ 555 cyclesisec. Ans.
,fgsz-&sosﬁ'

lical spring of mean dim‘neter _20 cm is made of 3
of 3 kN is dropped on this spring. Find the heigh, fg
re siri 'iug_the_springsotkatthespnng may be com.

eiat

o L e S i

et A 0N
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p—
spring is 125 Nimm?®. The solid [e
5 cm. Find : (i) diameter of wire, (ii)

Tak“-’ C= 4.5 x IO"N!’mm’_

Sol. Given :
Stiffness of spring, 8 =1.5 N/mm
Load on spring, W=60N
Maximum shear stress, 1 = 125 N/mm?
Solid length of spring, =5cm =50 mm
Modulus of rigidity, C =4.5 x 10* N/mm?.
Let d = Diameter of wire,
D = Mean dia. of coil, and
R = Mean radiusnfcoil:-g
n = Number of coils.
Using equation (16.27),
4 4 4
s= Cd or 15= M
64.R%.n 64x R xn
1.5x64xR3xn
déi=—"—""""_"_"" ), 3
PP 0.002133R* x n
Using equation (16.24),
16Wx R 16x60x R
T= T r 125 = T T
125 x nd®
R= T6x60 - 0.40906d°

Substituting the value of R in equation (i), we get
d* =0.002133 x (0.40906d%) x n
=0.002133 x (0.40906%) x d® x n = 0.00014599 xd® x n

d®.n 1 ' 1
or = o L
d*  0.00014599 0.00014599
Now using equation (16.28),
Solid length =nxdor50=nxd
50
A n=g
Substituting this value of n in equation (iii), we get
50 1
5 i . S ——————
& x " 000014599
1 1
s X — = %,
= d'= 500014599 ~ 50 ~ 12699

d=(136.99)V4 = 342 mm. Ans.
Substituting this value in equation (iv)

ngth of the spring (when the coils are touching) is given as
mean diameter of the coils and (iii) number of coils required.

«lE)

(i)

-..(€di)

..(iv)
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om equation (i0),
: R = 0.40906 d® = 0.40906 x (3.42)° = 16.36 mm
dia. of coil, D =2R =2 x 16.36 = 32.72 mm. Ans.

2 16.41. A close-coiled helical spring has a stiffness of 10 N/mm. ppg lengeh
mpressed, with adjacent coils touching each other is 40 cm. The modulus of rigiq
ial of the spring is 0.8 x 10° N/mm?. ;

mine the wire diameter and mean coil diameter if their ratio is }% .
16 g’ap between any two adjacent coil is 0.2 cm, what maximum load can be gppy;

g becomes solid, i.e., adjacent coils touch ? GPplied
s the corresponding maximum shear stress in the spring ? (AMIE, May 197

Mean coil diameter

mum shear stress induced in the wire.
D 10

%
1
i

TORSION OF SHAFTS AND SPRINGS
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But mean coil radius,

D
o
d5=32x (D) _32xD?
= x[—z“J = 3 =04 D3
i1
& 7 =04 or 5 .d?=04

=04 [ ___]
d%=0.4 x 10% = 400

d=+400 =20 mm = 2em. Ans.
i_ 1

D 10
D=10xd=10x2=20.0cm. Ans.
Let us find first number of turns,

From equation (ii), we have

1)
o &)
But

400 400
n= T - “2? =20 (=
6=2xn=2x20=40 mm
We know, stiffness of spring is given by
w
F or 10= 20
W =10 x 40 = 400 N.
Using equation (16.24), we have
16.W.R
ﬂ'.da
_ 16x 400 x 100
T ax20°
= 25.465 N(mm’. Ans.

Problem 16.42. Two close-coiled concentric helical springs of the same length, are
wound out of the same wire, circular in cross-section and supports a compressive load ‘P’. The
inner spring consists of 20 turns of mean diameter 16 cm and the outer spring has 18 turns of
mean diameter 20 cm. Calculate the maximum stress produced in each spring if the diameter of
wire = 1 em and P = 1000 N. (AMIE, Summer 1989)

Sol. Given :

Total load supported, P = 1000 N -
Both the springs are of the same length of the same material and having same dia. of
wire, Hence values of L, C and ‘d" will be same. _

d = 20)

8=

Ans.

T=

For inner spring
No. of turns, n; =20
160
Mean dia., D, = 16 cm = 160 mm R;==-=80mm
Dia. of wire, d,--lcm=10mm




