S2 ARC UM

TED (10) - 1015 (REVISION - 2010)

Signature

Reg. No.

SECOND SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLOGY — MARCH, 2015

TECHNICAL MATHEMATICS – II (Common except DCP and CABM)

[Time: 3 hours]

(Maximum marks : 100)

PART-A

(Maximum marks : 10)

Marks

- I Answer all questions. Each question carries 2 marks.
 - 1. Evaluate $\lim_{x \to 1} (x 1)$.
 - 2. Find the derivative of $1 + \tan x$ with respect to x.
 - 3. Find the rate of change of volume of a cube with respect to its side.
 - 4. Integrate $(x^2 + 1)$ with respect to x.
 - 5. Find the order of the differential equation $\frac{dy}{dx} = ky.$ (5×2=10)

PART-B

(Maximum marks : 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Find the derivative of x^3 using first principle.
 - 2. If $x = at^2$, y = 2at, find $\frac{dy}{dx}$.
 - 3. Find the equation to the tangent and normal to the curve $y = 3x^2 + x 2$ at (1, 2).
 - 4. Integrate $x^2 e^{-3x}$ with respect to x.
 - 5. Evaluate $\int_{0}^{n} \frac{1}{1-\sin x} dx$.
 - 6. Find the area bounded by the curve $y = x + \sin x$, the x axis between x = 0 and $x = \frac{\pi}{2}$.
 - 7. Solve $(1 + x) \frac{dy}{dx} y = (1 + x)^2$. (5×6=30)

PART-C

2

Marks

5

5

5

5

5

5

5

5

5

5

5

5

(Maximum marks : 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

III (a) If $y = \frac{\cos x}{x + \sin x}$, find $\frac{dy}{dx}$. (b) If $y = \log (\sec x + \tan x)$, prove that $\frac{dy}{dx} = \sec x$. (c) If y = x. sinx, prove that $y^{11} + y = 2 \cos x$. OR dy

IV (a) If
$$x = \cot t$$
, $\sin t$, $y = \sin t - t$. $\cot t$, find $\frac{dy}{dx}$

(b) If $y = e^x$. log (sinx), find $\frac{dy}{dx}$.

V

(c) If $y = \log [x + \sqrt{x^2 + 1}]$, find $\frac{dy}{dx}$.

Unit—II

- (a) Find the values of x for which the tangent to the curve $y = \frac{x}{1-x}$ will be parallel to the y axis.
- (b) A particle projected vertically upwards and its height h and time t are connected by $h = 60t 15t^2$. Find the greatest height attained.
- (c) A spherical balloon is inflated by pumping 20 cc of gas per second. Find the rate at which the radius of the balloon is increasing, when the radius is 1.

OR

- VI (a) Find the range of values of x for which $x^2 + 3x 4$ is :
 - (i) increasing (ii) decreasing
 - (b) The deflection of a beam is given by $y = 2x^3 9x^2 + 12x$. Find the maximum deflection.
 - (c) The sum of the diameter and length of an open cylindrical vessel is 40 cm. Prove that the maximum volume is obtained when the radius is equal to the length.

UNIT--III

VII (a) Integrate $(\tan x - \cot x)^2$ with respect to x.

- (b) Integrate $\cos^3 2x$ with respect to x.
- (c) Show that $f \sec x \, dx = \log(\sec x + \tan x) + c$.

		Marks
(a)	Integrate $\tan^5 x$. $\sec^2 x$ with respect to x.	5
(b)	Show that $f \tan x dx = \log (\sec x) + c$.	5
(c)	Integrate x^2 . Sinx with respect to x.	5
	UnitIV	
(a)	Find the area between the curves $x^2 = 4y$ and $y^2 = 4x$.	5
(b)	Find the volume of the solid generated by revolving one arch of the curve $y = 3 \sin 2x$ about the $x - axis$.	5
(c)	Solve $\frac{dy}{dx} + y \cot x = \csc x$.	5
	Or	
(a)	Solve $3e^x \tan y dx + (1 - e^x) \sec^2 y dy = 0$.	5

5

5

J.

3

VIII

IX

X

- (b) Obtain the area enclosed between the parabola $y = x^2 x 2$ and the x – axis.
- (c) Find the volume generated by the rotation of the area bounded by the curve $y = 2x^2 + 1$, the y - axis and the lines y = 3, y = 9 about the y axis.