TED (21) 2002	
(Revision-2021)	

A23 -	2106220097	
723	2100220037	

Reg.No	
Signatura	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, APRIL - 2023

MATHEMATICS - II

[Maximum marks: 75] (Time: 3 Hours)

PART A

I. Answer all the following questions in one word or one sentence. Each question carries 1 mark

		$(9 \times 1 = 9 \text{ Marks})$	
		Module outcome	Cognitive level
1	Evaluate $\begin{vmatrix} 3 & 4 \\ -2 & 3 \end{vmatrix}$	M1.01	R
2	Find A^{T} if $A = \begin{bmatrix} 1 & 3 & 5 \\ 3 & 4 & 2 \\ 2 & 1 & 3 \end{bmatrix}$	M1.03	R
3	Find $\vec{a} + \vec{b}$ if $\vec{a} = 3\hat{i} + 4\hat{j} - 2\hat{k}$, $\vec{b} = 2\hat{i} - 3\hat{j} - 2\hat{k}$	M2.02	U
4	Find a vector joining $(1,2,-3)$ and $(3,1,1)$	M2.01	R
5	$\int sec^2x.dx =$	M3.01	R
6	Find $\int (2x+3)dx$	M3.01	U
7	Find $\int x^5 dx$	M3.01	U
8	Find order and degree of the differential equation $\left(\frac{dy}{dx}\right)^3 + \frac{d^2y}{dx^2} = 1$	M4.02	A
9	Write the formula for finding area included between the curve $y = f(x)$, $X - axis$, and the ordinates at $x = a$ and $x = b$	M4.01	R

PART B

II. Answer any eight questions from the following. Each question carries 3 marks.

 $(8 \times 3 = 24 \text{ Marks})$

		Module outcome	Cognitive level
1	Solve for x, if $\begin{vmatrix} 3x & 7 \\ 2 & 3 \end{vmatrix} = \begin{vmatrix} 4 & 2 \\ 2 & 2 \end{vmatrix}$	M1.01	U
2	If $A = \begin{bmatrix} 3 & -2 \\ -7 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix}$, Compute 3A - 5B.	M1.03	U
3	If $A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 3 & -2 \\ 1 & 3 \end{bmatrix}$ Compute (A+B)C.	M1.03	R
4	Find dot product and angle between the vectors.	M2.02	R
	$\vec{a} = \hat{\imath} - 2\hat{\jmath} + 3\hat{k}$ and $\vec{b} = 3\hat{\imath} - 2\hat{\jmath} + \hat{k}$		
5	Find $\vec{a} \times \vec{b}$	M2.02	U
	$\vec{a} = 3\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = \hat{i} - 3\hat{j} + 4\hat{k}$		
6	Find $\int \sin 2x \cdot \cos 3x \cdot dx$	M3.01	R
7	Find $\int \tan x dx$	M3.02	U

8	Find $\int \frac{2+\sin x}{\cos^2 x} dx$	M3.01	R
9	Find area bounded by the curve = $x + \sin x$, the X- axis and the ordinates at $x = 0$ and $x = \frac{\pi}{2}$	M4.01	A
10	Solve $\frac{dy}{dx} = 2y$	M4.02	A

PART C Answer all questions. Each question carries seven marks

 $(6 \times 7 = 42 \text{ Marks})$

			Module outcome	Cognitive level
III	Solve the following system of equation using Cramer's rule $x + y + z = 3$, $2x + 3y + z = 6$, $x - y - z = -3$ OR	(7)	M1.02	U
IV	Solve the following system of equation using inverse of coefficient matrix $5x - y = 3,4x + 2y = -1$	(7)	M1.03	U
V	(a) If A,B,C are three points whose position vectors are given by $A(\hat{i}+3\hat{j}+2\hat{k})$, $B(2\hat{i}-\hat{j}+\hat{k})$ and $C(2\hat{i}-3\hat{j}+4\hat{k})$, Find \overrightarrow{AB} x \overrightarrow{AC}	(4)	M2.02	U
	(b) Find the work done in moving an object along the vector $3\hat{i} + 2\hat{j} - 5\hat{k}$ if the force applied is $5\hat{i} + 4\hat{j} + \hat{k}$.	(3)	M2.03	U
VI	OR (a) Find a unit vector perpendicular to both $\vec{a} = 2\hat{i} + 2\hat{j} + \hat{k} \text{ and } \vec{b} = 6\hat{i} - 3\hat{j} + 2\hat{k}.$	(5)	M2.02	U
	(b)Prove that $\vec{a} = 3\hat{i} - \hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + 2\hat{j} - 2\hat{k}$ are perpendicular	` /	M2.02	U
VII	(a) Find the value of p so that $p\hat{i} + 2\hat{j} + 3\hat{k}$ and $-\hat{i} + 3\hat{j} - 4\hat{k}$ are Perpendicular.	(3)	M2.02	R
	(b) Find unit vector in the direction of $\vec{a} + \vec{b}$ if $\vec{a} = 2\hat{i} + 2\hat{j} - 5\hat{k}$, $\vec{b} = 2\hat{i} + \hat{j} + 3\hat{k}$ OR	(4)	M2.01	R
VIII	 (a) Find moment about the point î - 3ĵ + k of a force 4î - 3k acting through the point 2î - 2ĵ + 5k. (b) If the position vector of A is 2î - ĵ - k and position vector 	(5)	M2.03	A
	of B is $-\hat{i} - 3\hat{j} + 3\hat{k}$. Find \overrightarrow{AB} .	(2)	M2.01	R
IX	(a)Evaluate $\int \frac{sec^2x}{\sqrt{1-tan^2x}} . dx$	(4)	M3.02	U
37	(b)Evaluate $\int (x+1).(x+2)dx$. OR	(3)	M3.01	R
X	(a)Evaluate $\int_0^4 x \sqrt{x^2 + 9} dx$	(4)	M3.03	U
	(b)Evaluate $\int x^2 \cdot \log x \cdot dx$	(3)	M3.02	U

XI	(a)Evaluate $\int_{1}^{2} \log x \cdot dx$	(4)	M3.03	U
	(b)Evaluate $\int \cos 4x \cdot \sin 2x \cdot dx$	(3)	M3.02	R
XII	OR (a)Evaluate $\int \cos^2 2x \cdot dx$	(3)	M2.01	R
	(b)Evaluate $\int_{1}^{2} \frac{2x+1}{x^2+x+1} dx$	(4)	M2.03	U
XIII	(a) Find the area bounded by the portion of the parabola $y^2 = 4x$ about the X- axis between the ordinates at $x = 0$ and $x = 4$.	(3)	M4.01	A
	(b) Solve $dy = e^{3x + y} dx$	(4)	M4.02	A
	OR			
XIV	(a) Solve $\frac{dy}{dx} + 2y \tan x = \sin x$ (b) Solve $\frac{dy}{dx} = 2$	(5)	M4.02	A
	(b)Solve $\frac{dy}{dx} = 2$	(2)	M4.02	A
