TED (21)	2003
(Revision	-2021)

A23-2106220111A

Reg. No	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL – 2023

APPLIED PHYSICS -II

[Maximum Marks: 75] [Time: 3 Hours]

PART-A

I. Answer all the following questions in one word or one sentence. Each question carries 'one' mark.

 $(9 \times 1 = 9 \text{ Marks})$

		Module Outcome	Cognitive level
1.	Write one example for simple harmonic motion	M1.01	R
2.	Explain the term reverberation.	M1.04	R
3.	The twinkling of stars is due to	M2.01	U
4.	What is the SI unit for power of a lens?	M2.02	R
5.	State Ohm's law.	M3.02	R
6.	To convert a galvanometer into an ammeter, a low resistance is	M3.04	U
	connected in with the galvanometer (series/parallel)		
7.	How a diode is connected to a battery in forward bias?	M4.01	R
8.	State whether the following statement is true or false. The band gap of	M4.01	U
	semiconductor is less than that of insulators.		
9.	Give one application of carbon nanotubes.	M4.04	R

PART-B

II. Answer any eight questions from the following. Each question carries 'three' marks.

(8 x 3 = 24 Marks)
Module Outcome Cognitive level

1.	Match the following			U
	Column A	Column B		
	Displacement of a particle	2π		
	executing simple harmonic	$\overline{\omega}$		
	motion.			
	Period of simple harmonic	1		
	motion	\overline{T}		
	Frequency of simple harmonic	y=asinωt		
	motion			
2.	Distinguish between longitudinal	and transverse waves.	M1.02	U
3.	Explain the phenomenon of beats		M1.02	U
4.	List any three applications of ultra	asonic waves.	M1.03	R
5.	What do you mean by total intern	al reflection? What are the conditions	M2.04	U
	for total internal reflection?			

6.	A wire of length 2 m and radius 0.1 mm has a resistance of 200 Ω . Find	M3.02	A
	the specific resistance of the material of the wire.		
7.	Mention any three characteristics of Nano materials.	M4.04	R
8.	Distinguish between spontaneous emission and stimulated emission.	M4.03	U
9.	How transistor works as an amplifier?	M4.01	R
10.	Describe the formation of P-type and n-type semiconductor.	M4.01	U

PART-C Answer all questions. Each question carries *'seven'* marks

(6 x 7 = 42 Marks)

Module Outcome Cognitive level

		Module Outcome	Cognitive level
III.	What are the characteristics of a wave? Derive the relation	M1.02	U
	between wavelength, frequency and velocity of a wave.		
	OR		
IV.	A tuning fork makes one complete vibration in 1/200 second.	M1.02	A
	If the velocity of sound in air is 340 m/s, find the wavelength		
	of the sound waves produced by the tuning fork.		
V.	Explain the working of astronomical telescope. Discuss the	M2.03	R
	resolving power of astronomical telescope.		
	OR		
VI.	A converging lens forms a real image. If the image is twice	M2.02	A
	the size of the object and 72 cm from the lens, calculate the		
	focal length and power of the lens.		
VII.	Sketch the ray diagram for the image formation by a convex lens,	M2.01	U
	when the object is placed (i) beyond 2F (ii) between F and 2F.		
	Discuss the nature of the images.		
	OR		
VIII.	Outline the structure of an optical fiber. List any three applications	M2.04	R
	of optical fibers.		
IX.	Discuss the working of meter bridge with a neat diagram.	M3.03	U
	OR		
X.	Write a note on (i) Coulomb's law (ii) Electric field	M3.01	R
	(iii) Electric potential.		
		I	1

XI.	Explain the construction and working of a moving coil	M3.04	U
	Galvanometer?		
	OR		
XII.	Two resistaces 12 Ω and 6 Ω are connected in parallel and the	M3.02	A
	combination is connected in series with an 8 Ω resistance. Find the		
	effective resistance.		
XIII.	Discuss the working of He-Ne gas laser with a neat diagram.	M4.03	U
	OR		
XIV.	Explain Einstein's photoelectric equation and the laws of	M4.02	U
	photoelectric effect.		
