TED	(15)	ent.	6025
(REVI	SION	, to	2015)

Reg. No	15020877
Signature	Ait

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2018

INDUSTRIAL AUTOMATION AND MECHATRONICS

[Time: 3 hours

(Maximum marks: 100)

PART -- A

(Maximum marks: 10)

Marks

- Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1 Define automation.
 - Define sensors.
 - 3. Sketch the symbol of any two control valve.
 - 4 Draw any four symbols used in ladder diagram.
 - 5. State the need for an automation system in an industry.

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Discuss the future challenges in automation.
 - 2. Discuss the advantages of automation.
 - 3. Describe briefly the working principle of an incremental encoder.
 - 4. Discuss the applications of resistance temperature detector.
 - Discuss the need for the use of electrical systems as actuators for control.
 - 6. Discuss the role of a timer in a Programmable logic converter.
 - List the factors for selecting a Programmable logic converter for a particular task.

 $(5 \times 6 = 30)$

[P.T.O.

[176]

PART -- C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

UNIT -- 1

Ш	(a)	Explain fixed programmable and integrated automation.	8	
	(b)	Describe the advantages and limitations of open loop and closed loop control system.		
		OR		
IV.	(a)	Explain the basic elements of an automated system.	8	
•	(b)	Compare traditional and mechatronics design.	7	
		Unit — II		
V	(a)	With neat sketches explain various eddy current proximity sensors.	8	
	(b)	Explain the working of an optical encoder with neat sketches.	7	
		OR		
VI	(a)	Explain an inductive proximity sensor with neat sketches. List any two applications of inductive proximity sensor.	8	
	Æ)	Explain debouncing of mechanical switches.	7	
		UNIT III		
VII	(a)	With neat sketches describe the sequencing of double acting cylinders.	8	
	(b)	Explain the working of thyristor with neat sketches.	7	
		OR		
VIII	(a)	Discuss the need for actuators. Explain any two actuators with neat sketches.	8	
	(d)	Describe various solid state switches.	7	
		Unit IV		
IX	(3)	Explain the block diagram of programmable logic converter.	8	
,	(b)	Describe the techniques used in fault detection.	7	
OR				
X	(a)	Explain the working of micro controller with block diagrams.	8	
	(b)	Describe the possible mechatronics design solutions.	7	