TED (10)-4029

(REVISION-2010)

Reg. No.

Signature

SIXTH SEMESTER DIPLOMA EXAMINATION IN MECHANICAL ENGINEERING—OCTOBER, 2013

REFRIGERATION AND AIR CONDITIONING

[*Time* : 3 hours

(Maximum marks : 100)

[Note: 1. Use of psychrometric chart allowed.

2. Missing data if any may be suitably assumed.]

Marks

PART-A

I Answer all questions in one or two sentences. Each question carries 2 marks.

- 1. Define sensible heat of a substance.
- 2. What is meant by open air refrigeration cycle ?
- 3. Write the classification of rotary compressors.
- 4. Show the humidification process on a psychrometric chart.
- 5. List the factors considered in heating load calculation. (5×2=10)

PART-B

- II Answer any five questions. Each question carries 6 marks.
 - 1. Explain the units of refrigeration.
 - 2. How the refrigerants are classified ?
 - 3. What is an expansion device and what is its purpose in a refrigeration system ?
 - 4. Write short notes on dry air and moist air.
 - 5. Explain with the help of psychrometric charts, sensible cooling process and efficiency of cooling coil.
 - 6. Explain with neat sketch the working of summer air conditioning system.
 - 7. Explain the conditions that affect body heat.

PART-C

(Answer one full question from each unit. Each question carries 15 marks.)

$U_{NIT} - I$

III (a) List the types of vapour compression cycles.

- (b) Mention the advantages and disadvantages of vapour compression refrigeration system over air refrigeration system.
- (c) 1.5 kW per ton of refrigeration is required to maintain the temperature of -40° C in the refrigerator. If the refrigerant cycle works on Carnot cycle, determine COP of the cycle and temperature of the sink.

5

4

6

(5×6=30)

Marks 5

10

4

6

5

8

7

5

10

5

10

- IV (a) Explain with a block diagram vapour compression system of refrigeration.
 - (b) Find the theoretical COP for a CO_2 machine working between the temperature range of 25°C and -5°C. The dryness fraction of CO_2 gas during the suction stroke is 0.6.

2

Temperature	Liquid		Vapour		Latent
°C	Enthalpy kJ/kg	Entropy kJ/kg	Enthalpy kJ/kg	Entropy kJ/kg	heat kJ/kg
25	81.23	0.2512	202.65	0.6927	121.42
-5	-7.54	-0.0419	236.98	0.8416	245.36

Following properties of CO₂ are given :

Unit – II

- V (a) How are condensers classified ?
 - (b) Draw a neat sketch of cold storage.
 - (c) What are the desirable properties of an ideal refrigerant ?

OR

VI (a) Explain with block diagram vapour absorption system of refrigeration.

(b) Explain the main stages for the process of freeze drying.

UNIT – III

- VII (a) State Dalton's law of partial pressure.
 - (b) For a sample of air having 22°C DBT, relative humidity 30% at barometric pressure of 760 mm of Hg. Using psychrometric chart find the humidity ratio and vapour density.

OR

VIII (a) List the factors depends upon the by-pass factor.

(b) 200 m³ of air per minute is passed through the adiabatic humidifier. The condition of air at inlet is 40°C DBT and 15% relative humidity and the outlet condition is 25°C DBT and 20°C WBT. Find the DPT and the amount of water vapour added to the air per minute.

UNIT - IV

IX (a)		Write short notes on window type air conditioner.		
(b) (c)	(b)	What are the sources of sensible heat gain and latent heat gain ?	6	
	(c)	Draw a neat labeled diagram of an year round air conditioning system.	5	

X (a) Sketch a neat layout of central air conditioning plant.

(b) The following data refer to design of an air conditioning system of a hotel :

Number of dining people = 30 Employees serving the food = 3 Outdoor conditions = 35° C DBT and 25° C WBT Required comfort condition = 26° C DBT and 50% RH Sensible heat gain per person taking food = 210 kJ Latent heat gain per person taking food = 168 kJ Sensible heat gain per person serving food = 210 kJ Latent heat gain per person serving food = 270 kJ Sensible heat gain per meal = 12.5 kJ Latent heat gain per meal = 20 kJ Sensible heat gain due to radiation = 6700 kJ/hour Total heat flow through walls, roof and floor = 20000 kJ/hour Equipment sensible heat gain = 8500 kJ/hour Total infiltrated air = 360 m³/hour.

Calculate :

- (i) Total room heat load; and
- (ii) Room sensible heat factor.

10