TED	(21)	2021
-----	------	------

(Revision-2021)

A23 - 2106220015

Reg.No	• •		
Signature			

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, APRIL - 2023

ENGINEERING MECHANICS

[Maximum marks: 75]

(Time: 3 Hours)

PART A

I. Answer all the following questions in one word or one sentence. Each question carries 1 mark

 $(9 \times 1 = 9 \text{ Marks})$ Module Cognitive outcome level Define force M1.01R 2 State Varignon's theorem M1.04 U No. of restraints in a fixed support is 3 M2.01 R 4 Define a truss M2.03 R 5 The maximum value of static friction comes into play when a M2.05 R body just starts to slide over another is..... Define moment of inertia 6 U M3.03The position of centroid of a right-angled triangle from the base is 7 M3.03 R Change in shape of an object in response to an applied force is M4.01 R called..... Ratio of linear to linear strain is..... 9 M4.05 R

PART B

II. Answer any eight questions from the following. Each question carries 3 marks.

 $(8 \times 3 = 24 \text{ Marks})$

		Module outcome	Cognitive level
1	Explain the following terms	M1.03	U
	(a)Resultant (b) Equilibrant (c) Moment of a force	M1.4	
2	An electric light fixture of weight Q(40N) is supported as shown in figure. Determine the tensile forces in the wires BA and BC if their angles of inclination are as shown	M1.05	U
	C 60° A 2 1 45° B V Q		

3	Draw free body diagram of the given figure	M1.05	U
	30° B 60°		
4	Define simply supported and cantilever beam	M2.01	R
5	Explain the different types of friction	M2.05	R
6	Define radius of gyration and polar moment of inertia	M3.04	R
7	State parallel axis theorem	M3.04	R
8	Define the following terms (a) Poisson's ratio (b) Rigidity modulus (c) Bulk modulus	M4.05	R
9	Explain the following properties (a) Elasticity (b) Hardness (c) Toughness	M4.04	R
10	Determine the Poisson's ratio and bulk modulus of a material whose modulus of elasticity is 200GPa and modulus of rigidity is 80GPa	M4.05	U

PART C
Answer all questions. Each question carries seven marks

III Determine the resultant and direction of resultant of the concurrent force system shown in figure.

Module outcome level

M1.01 U

Sookn

700kn

150kN

13.7	O.D.	141.05	TI
IV	OR Find out the tension in all the strings AB,BC and CD	M1.05	U
	A 125° 110° C 50 N 80 N	*	
V	Find the support reactions of the following beam	M2.02	A
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	OR		
VI	Define friction. What are the different laws of friction.	M2.05	R
VII	Compute the forces in members of the given truss.	M2.03	A
	4m		
	OR		
VIII	Explain the terms (a) Coefficient of friction (b) Angle of friction (c) Angle of repose (d) Cone of friction	M2.05	U

IX	Locate the centroid of the given figure	M3.02	U
	20 mm 140 mm 20 mm 20 mm		
	OR		
X	Determine the moment of inertia about the centroidal axes of the 1 section given below.	M3.04	U
	14-8 cm→1 2 cm ↑		
	12 cm 2 cm 2 cm 16 cm 1 7		
XI	Determine the centroid of given section	M3.02	U
	30 mm 30 mm ←		

	OR		
XII	Determine the moment of inertia about the centroidal axes of given T section given below.	M3.04	A
	12 cm		
XIII	A circular steel rod of 2cm diameter and 150cm long is subjected to an axial pull of 20kN. If the modulus of elasticity of the material of the rod is 2 x 10 ⁵ N/mm ² , determine: (i) Stress (ii) Strain	M4.03	A
XIII	axial pull of 20kN. If the modulus of elasticity of the material of the rod is 2 x 10 ⁵ N/mm ² , determine: (i) Stress (ii) Strain (iii) Elongation of the rod	M4.03	A
XIII	axial pull of 20kN. If the modulus of elasticity of the material of the rod is 2 x 10 ⁵ N/mm ² , determine: (i) Stress (ii) Strain	M4.03	A
