TED	(10)	-1003 A Reg. No	
(REV	ISION-	—2010) Signature	
F	IRST	SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY OCTOBER, 2012	Y
		APPLIED SCIENCE-I (Physics) (Common-except DCP and CABM)	
		[Time: 1½]	ours
		(Maximum marks: 50)	
		PART—A	
	9	(Answer the following questions in one or two sentences. Each questions carries 2 marks)	
		M	arks
I		What are giga and femto?	2
	(b)	Define rotational kinetic energy. Give the expression for it.	2
		PART—B	
		(Answer any two full questions. Each carries 8 marks)	
II	(a)	Obtain the expression for range of a projectile and deduce the condition for maximum range.	1
	(b)	Explain why the outer end of road is laid at a higher level than the inner on the curved portion of the road.	4
III	(a)	Define impulse of a force and show that it is equal to change in momentum.	4
		Define parallel and perpendicular axes theorem.	4
IV	(a)	Obtain an expression for the moment of inertia of a disc about an axis passing through the centre and perpendicular to its plane.	1
	(b)	State Hooke's law. Deduce the expression for bulk modulus.	4
		PART—C	
	(2	Answer one full question from each unit. Each question carries 15 marks.)	
		Unit—I	
V	(a)	Explain the recoil velocity of a gun.	3
100	(b)	When a body is thrown up, show that time of ascent is equal to time of descent.	6

(c) A body travels 100 m during 4th second and 150 m during the 9th second of its motion. Find the distance travelled by the body during the 11th second of its

- motion.

			Marks
VI	(a)	Write the advantages of SI system over the other system of units.	3
	(b)	Derive the expression for the period of a simple pendulum.	6
	(c)	A stone of mass 900 gm tied at the end of string is whirled round horizontally in a circle of radius 2 m, with a speed of 120 rev/min. Calculate the centripetal acceleration and force.	6
	1	Unit—II	21
VII	(a)	Define radius of gyration.	3
		A circular disc of mass 0.5 kg and radius 0.1 m is rotating about a tangent in its plane. If it makes 5 rotations/min, calculate its rotational kinetic energy.	6
	(c)	Derive the equation for time period of a satellite.	6
		OR	
VIII	(a)	Explain geostationary satellite.	3
	(b)	State Newton's Universal Law of Gravitation. Derive the expression for orbital velocity of a satellite.	6
	(c)	A 10 kg weight is attached to one end of a copper wire 4 m long and diameter 2 mm. Find the extension produced if young's modulus of wire is equal to	Ü
		$1.25 \times 10^{11} \text{ N/m}^2$.	6

TED ((10)-	-1003 B Reg. No		
(REVISION—2010) Signature				
FII	RST	SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY OCTOBER, 2012		
		APPLIED SCIENCE-I (Chemistry)		
		(Common–except DCP and CABM)		
		[Time: 1½ hou	ırs	
		(Maximum marks: 50)		
		PART—A		
		(Answer the following questions in one or two sentences. Each question carries 2 marks.)		
		Mari	ks	
I	(a)	Rain water is the purest form of natural waters. Give reason.	2	
	(b)	PH of a cold drink is 5. What will be its action on blue and red litmus solution?	2	
		PART—B		
		(Answer any two full questions. Each question carries 8 marks.)		
Π	(a)	Find the oxidation number of "Cr" in K2Cr2O7 and Cr2O3.	4	
			4	
Ш	(a)	What is acid-base indicator? What type of indicators are used in the following set of titrations:		
		(i) $HNO_3 \times NaOH$ (iii) $NaOH \times acetic acid$.		
		(ii) $Na_2CO_3 \times H_2SO_4$	4	
	(b)	How do water becomes hard water? Define degree of hardness of water.	4	
IV	(a)	Point out the reducing and oxidizing agents in the following reaction:		
		$MnO_2 + 4HC1 \rightarrow MnCl_2 + Cl_2 + 2H_2O$	4	
	(b)	Enumerate the applications of carbon nanotubes in medicine.	4	
		PARTC		
		(Answer <i>one</i> full question from each unit. Each question carries 15 marks.)		
	,	Unit—I		
100	/ \			
V	(a)	Explain the neutralization reaction according to Arrhenius concept and Lewis concept with suitable example.	4	
	(b)	Define p ^H . Calculate the p ^H of 0.001 normal NaOH solution.	4	
[278]		[P.T.	0.	
0.00				

		TV.	raiks
	(c)	Calculate the mass of zinc required to produce 20 g of H_2 gas at STP using hydrochloric acid (At. wt. $Zn - 65.5$).	4
	(d)	Applying the following equation, calculate the equivalent mass of Ca(OH,):	
		$Ca(OH)_2 + H_2SO4 \rightarrow CaSO_4 + 2H_2O.$	3
		OR	
VI	(a)	Copper sulphate solution is taken in a beaker and iron metal rod is dipped in it. The following reaction occurs:	
		$Cu^{2+}(aq) + Fe(s) \rightarrow Fe_{2+}(aq) + Cu(s)$	
		What are the changes you can observe?	3
	(b)	What are the different types of buffer solutions? Give examples.	4
	(c)	Define standard solution and normal solution.	4
	(d)	Calculate the mass of H ₂ SO ₄ required to make 0.01 Normal 200 ml solution.	4
		Unit—II	
VII	(a)	What are the disadvantages of using hard water?	4
	(b)	Define ionic product of water. How will you obtain its value?	4
	(c)	Explain any two methods for the synthesis of carbon nanotubes.	4
	(d)	What is sterilization of water? Mention any two sterilization methods of water.	3
		OR	
VIII	(a)	Give any two advantages of using hard water.	3
	(b)	Comment on the structure of carbon nanotubes.	4
	(c)	Explain the different types of filtrations in water treatment.	4
	(d)	Write down the EDTA titration method for the estimation of hardness of water.	4