FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY

(Common to all Diploma Programmes except DCP & CABM)

MODEL QUESTION PAPER

Engineering Mathematics I

Max Marks: 100 Marks Time: 3 Hrs

PART A

(Answer all questions. 2 Marks each)

I

- 1. Evaluate $\sin \frac{\pi}{2} \cos \frac{\pi}{4} \tan \frac{\pi}{3}$.
- 2. Evaluate $\frac{tan15}{1+tan^215}$.
- 3. Calculate the value of $\lim_{x\to\infty} \frac{x^2+2x+1}{x^2+x-3}$.
- 4. Find the derivative of $y = 3\cos x + \sqrt{x}$.
- 5. Find the slope of y = tanx at $x = \frac{\pi}{6}$

 $(5 \times 2Marks = 10 Marks)$

PART B

(Answer any 5 questions. 6 Marks each)

II

- 1. a. If tanA = 3, tanB = 1, A and B are acute angles find cos(A B). b. Simplify $\frac{cos(90+A)sec(360+A)tan(180-A)}{sec(A-720)sin(540+A)cot(A-90)}$.
- 2. From the top of building 30 m high, angles of depressions of two cars on a road are 30° and 45°. Find the distance between the cars.
- 3. Prove that $\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 5A} = tan 3A.$
- 4. Find $\frac{dy}{dx}$ if (i) $x = asec\theta$, $y = btan\theta$ (ii) $x^2 + 3xy + y^2 = 1$.
- 5. Solve $\triangle ABC$, given a = 87cm, b = 53cm, $C = 70^{\circ}$.
- 6. Differentiate ' $\sin x$ ' with respect to x by the method of first principles.
- 7. The perimeter of a rectangle is 100 m. Find the sides when the area is maximum.

 $(6 \times 5 \text{ Marks} = 30 \text{ Marks})$

PART C

(Answer one full question from each unit. 15 Marks each)

Module I

2. Find $\frac{d^2y}{dx^2}$ if y = sinxcosx.

3. If y = log(cosecx - cotx), Show that $\frac{dy}{dx} = cosecx$.

III	
1. If $A + B = 45^{\circ}$, Show that $(1 + tanA)(1 + tanB) = 2$.	5
2. Express $\sqrt{3}\cos x + \sin x$ in the form $R\sin(x + \alpha)$.	5
3. Prove that $\cos A + \cos \left(A + \frac{2\pi}{3}\right) + \cos \left(A - \frac{2\pi}{3}\right) = 0$.	5
Or	
IV 1. Prove that $\frac{sinA}{1+cosA} + \frac{1+cosA}{sinA} = 2cosecA$.	5
2. If $cosA = \frac{3}{5}$, $tanB = \frac{5}{12}$, A lies in the fourth quadrant, B lies in the third	
quadrant, find values of $sin(A + B)$ and $cos(A + B)$.	5
3. Find the value of $tan 75^0$ using addition formula and show that	
$tan 75^0 + cot 75^0 = 4.$	5
Module II	
V 1. Prove that $\frac{\sin 3A}{\sin A} + \frac{\cos 3A}{\cos A} = 4\cos 2A$.	5
2. Prove that $cos20^{0}cos40^{0}cos80^{0} = \frac{1}{8}$.	5
3. Solve $\triangle ABC$, given $a = 152cm$, $A = 80^{\circ}$, $B = 53^{\circ}$.	5
Or	
VI 1. Calculate the possible values of $cos\theta$ if $4cos2\theta + 2cos\theta + 3 = 0$.	5
2. Show that $cos\left(\frac{\pi}{8}\right) + cos\left(\frac{3\pi}{8}\right) + cos\left(\frac{5\pi}{8}\right) + cos\left(\frac{7\pi}{8}\right) = 0$.	5
3. Prove that $R(a^2 + b^2 + c^2) = abc(cotA + cotB + cotC)$.	5
Module III	
VII 1. Evaluate $\lim_{x\to -1} \frac{x^3+1}{x^5+1}$.	4

3

4

4. If
$$y = \frac{x \sin^{-1} x}{1 + x^2}$$
 find $\frac{dy}{dx}$.

Or

VIII 1. Evaluate $\lim_{\theta \to 0} \frac{\sin 3\theta + \sin 5\theta}{2\theta}$.

4

2. Find $\frac{dy}{dx}$ if (i) $y = \frac{e^x \sin x}{1 + \log x}$

(ii)
$$y = \frac{1}{\sec\sqrt{x}}$$
.

3. If $y = x^2 \sin x$, prove that $x^2 y'' - 4xy' + (x^2 + 6)y = 0$.

Module IV

IX 1. Find the equations of tangent and normal if $y = \frac{1}{3+x}$ at (-4,-1).

- 2. The distance S meters travelled by a particle is given by $S = ae^{2t} + be^{-2t}$ where t represents the time, show that acceleration varies as the distance.
 - 3. Find the minimum value of $2x^3 3x^2 36x + 10$.

Or

X 1. For what values of x is the tangent parallel to the curve $y = \frac{x}{(1-x)^2}$ parallel to

(i)
$$x - axis$$
 (ii) $y - axis$.

2. If S denotes the displacement of a particle at time t second and

$$S = 2t^3 - 9t^2 + 12t + 6$$

- (i) find the time when the acceleration is zero.
- (ii) Find the velocity at that time.

5

5

3. Air is pumped into a spherical rubber bladder of radius 3 inches. If the radius increases at a uniform rate of 1 inch/minute, find the rate at which the volume is increasing at the end of 3 minutes.