Scoring Indicators

Question Paper Set 2

APPLIED CHEMISTRY

Q	Scoring	Split	Sub	Total	
No	Indicators	score	Total	score	
	PART A		10 m	9	
I. 1	Pauli's exclusion principle		1		
I. 2	NaCl, KCl (any one example)		1		
I. 3	The point where the indicator changes colour in a titration.		1		
I. 4	pH value would decrease.		1		
I. 5	Water which does not produce lather readily with soap.		1		
I. 6	Phenol and formaldehyde		1	-	
I. 7	Any material which has got at least one dimension in the nanometer scale.				
I. 8	alkaline phosphate or alkaline chromate		1		
I. 9	The mass of the substance		1		
	deposited by the passage of one coulomb of electricity				
	PART B			24	
II. 1	Electronic configuration of Na	1	3		
	Value of each quantum numbers n=3, l=0, m=0, s=1/2 or -1/2	4 x ½=2			
II. 2	Definition of co-ordinate bond	1 1/2	3		
	Example- Formation of ammonium ion-equation	1 1/2			
II. 3	Definition of ionic product.	2	3		
	Mathematical statement	1			
II. 4	$Normality = \frac{wx1000}{Eq.wt.xV}$	1	3		
	$=\frac{2.8 \times 1000}{56 \times 250}$	1 1/2			
	=0.2N				

II. 5	Soda lime process- explanation	3	3	
II. 6	Definition of alloy Solder-Lead and Tin		3	
II. 7		2	3	
	which allows for a very low coefficient of thermal expansion.			
	Used for making glassware, high quality kitchen wares	1		
II. 8	Definition of addition polymer	2	3	
	Examples	1		
II.9	Definition of strong electrolyte	1	3	
	Example- NaCl (any one example)	1/2		
	Definition of weak electrolyte	1		
	Example- Acetic acid (any one example)	1/2		
II.10	Presence of moisture, presence of electrolyte, presence of	3 x1=3	3	
	impurities			
	(any three)			
	PART C			42
III.1	Definition of ionic bond	2	7	7
	Explanation of formation of NaCl (Any one example)			
	Na — Na⁺+ e	1/2		
	(2,8,1) (2,8)			
	C1+e — C1-	-		
	(2,8,7) $(2,8,8)$	1/2		
	(2,0,0)			
	Na ⁺ + Cl ⁻			
	11001	1/2		
	Definition of covalent bond			
	Explanation of formation of H ₂ or HF (Any one example)	1 ½		
	H× +×H -> HOH) or H-H	2		
	15 ¹ 15 ¹ 15 ²			

2	a) Heisenberg's uncertainty principle- statement	2	5	7
	$\Delta x \ x \ \Delta v \ge \frac{h}{4\pi m}$			
		1		
	$\Delta v = \frac{h}{4\pi m Ar}$			
	1701023	1 1/2		
	$\Delta v = \frac{6.625 \times 10^{-34} \text{ Kgm}^2 \text{s}^{-1}}{4 \times 3.14 \times 9.1 \times 10^{-31} \text{kg } \times 10^{-8} \text{m}}$			
	$= 5.8 x 10^3 m s^{-1}$	1/2		
	b) Definition of orbital	2	2	
3	a) Definition of normality	1	5	7
	Equation	1/2		
	Definition of molarity	1	=	
	Equation	1/2		
	$Molarity = \frac{wx1000}{Mol.wt.xV}$			
		1 1/2		
	$=\frac{4.9 \times 1000}{98 \ 600}$			
	= 0.083M	1/2		
	b) Definition of indicator.	2	2	
4	a) Definition of potable water	1	5	7
	Any four characteristics	4 X1=4		
	b) Any one method	1/2		
	Explanation of method	1 1/2	2	
5	a) (i) $[H^+] = 2 \times 0.01 = 0.02$	1	5	7
	$pH = -\log_{10}[H^+]$	1/2		
	$= -\log_{10}[0.02] = 1.69$	1		
	$pOH = -\log_{10}[OH^-]$	1/2		
	$= -\log_{10}[0.01] = 2$	1/2		-
	pH + pOH = 14	1/2		
	pH = 14 - pOH = 14 - 2 = 12	1		
		1.17		
	b) Definition of acidic buffer	1 ½		
	One example	1/2	2	

6	a)	Cation exchange resins contains acidic functional	1 ½	5	7
		groups and can exchange $\ensuremath{H^{+}}\xspace$ ions with cations like $\ensuremath{\text{Ca}^{2+}}\xspace$			
		and Mg ²⁺ ions			
		Equation	1		
		Anion exchange resins contains basic functional groups	1 ½		
		like -OH and can exchange OH—with anions like Cl			
		Equation	1		
	b)	Any two disadvantages	2x1 = 2	2	
7	a)	Any five applications of nanomaterials	5 x 1=5	5	7
	b)	Any two purposes of making alloys	2x1=2	2	
8	a)	Any four differences between thermoplastics and	4 x1=4	5	7
		thermo setting plastics.			
		One example for each	2 x ½=1		
	b)	Buna N- Butadiene and Acrylonitrile	1	2	
		Buna S-Butadiene and Styrene	1		
9	Defini	tion of electrolysis.	1	7	7
	Electro	plytic refining of copper			
	Anode- Impure metal				
	Catho	de-Pure metal	1/2		
	Electro	olyte-Acidified copper sulphate	1/2		
	On pa	ssing the electric current through the electrolyte, the			
	impure	e metal from anode dissolves into the electrolyte solution	2	,	
	and pu	are metal from copper sulphate solution deposits on the			
	cathod	e.		*	,
	At Ar	node (Oxidation)	1		
	Cu →	$Cu^{2+} + 2e^{-}$			
	At Ca	thode (Reduction)			
	Cu ²⁺	$+2e^{-} \rightarrow Cu$	1		
	The s	oluble impurities go into the solution and insoluble			
	impur	ties settle down at the bottom of an anode and are known	1/2		
	as ano	de mud.			
			J - 4 = 1		

10	a) Definition of electrochemical cell	2	. 5	7
	At the Zinc electrode(anode) oxidation occurs.	1		
	$Zn(s) \rightarrow Zn^{2+}(aq) + 2e$			
	At the Copper electrode (cathode) reduction occurs.	1		
	$Cu^{2+}(aq) + 2e \rightarrow Cu(s)$			
	Net reaction, $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$	1		
	b) Definition of anodizing	2	2	
11	a) Any four differences.	4 x1=4	5	7
	One example for each	$2x \frac{1}{2} = 1$		
	b) Definition of primary cell	1 1/2	2	
	One example	1/2		
12	a) Statement of Faraday's second law	2	5	7
	$\frac{m_1}{m_2} = \frac{E_1}{E_2}$			
		1		
	$m_1 = \frac{E_1}{E_2} x m_2$			-
	mass of copper deposited =	1		
	$\frac{\textit{Equivalent mass of copper}}{\textit{Equivalent mass of silver}} x \textit{ mass of silver}$	1		
	$= \frac{31.7}{108} \times 1.08 = 0.317g$	1		
	b) Definition of corrosion	2	2	