2/2/10/24 Sci

Scoring Indicators

APPLIED PHYSICS - I

Q NoScoring IndicatorsIPART A1 10^{-6} 2Inertia of motion3 2π 4 $\frac{2}{3}MR^2$ 5Zero6Temperature7Compressibility8Cohesion or Cohesive forces9Streamline flow or Steady flow		1	Sub Tota 1 1 1 1 1 1 1 1 1 1 1 1 1	T-4 1
Scoring Indicators I PART A 1 10^{-6} 2 Inertia of motion 3 2π 4 $\frac{2}{3}MR^2$ 5 Zero 6 Temperature 7 Compressibility 8 Cohesion or Cohesive forces		Score 1	Tota 1 1 1 1 1 1 1 1 1 1	Total score
2 Inertia of motion 3 2π 4 $\frac{2}{3}MR^2$ 5 Zero 6 Temperature 7 Compressibility 8 Cohesion or Cohesive forces		1 1 1 1 1 1	1 1 1 1 1 1	score
Inertia of motion $ 3 2\pi $ $ 4 \frac{2}{3}MR^2 $ $ 5 Zero $ $ 6 Temperature $ $ 7 Compressibility $ $ 8 Cohesion or Cohesive forces $		1 1 1 1 1 1	1 1 1 1 1	9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 1 1 1 1 1	1 1 1 1 1	
4 \(\frac{2}{3} MR^2 \) 5 \(\textit{Zero} \) 6 \(\textit{Temperature} \) 7 \(\text{Compressibility} \) 8 \(\text{Cohesion or Cohesive forces} \)		1 1 1 1 1	1 1 1 1	
5 Zero 6 Temperature 7 Compressibility 8 Cohesion or Cohesive forces		1 1 1 1	1 1 1	
6 Temperature 7 Compressibility 8 Cohesion or Cohesive forces		1 1 1	1	
7 Compressibility 8 Cohesion or Cohesive forces		1	1	
7 Compressibility 8 Cohesion or Cohesive forces		1	1	
8 Cohesion or Cohesive forces		1		
9 Streamline flow or Steady G		1	1	
Streamline flow or Steady flow		1		- 1
Totally 110W		1	1	
II PART R		1 1	1	
Newton's third law – statement				
Any two pre-	1	1	- 2	24
Any two properties of action and reaction forces				
	2	3		
$s = r\theta$	1		-	
$v = \frac{s}{t} = \frac{r\theta}{t}$	1 1			
Since $\alpha = \theta$. 3		
Since $\omega = \frac{\theta}{t}$, $v = r\omega$	1			
Example for positive work				
Example for negative work	1			-
Example for zero work	1	3		
4 Kineti		3		
Kinetic energy – definition + equation	1			
Potential energy – definition + equation	1.5			1
5 Any three disc. 1	1.5	3		
5 Any three disadvantages of friction	1.5			
	3	3		

6	$P = \frac{W}{t} = \frac{FS}{t} = \frac{mgS}{t}$	1.5		
	$P = \frac{600 \times 9.8 \times 5}{10} = 2940 W$	1.5	3	
7	Any three advantages of pyrometers	3	3	
. 8	Stress – definition, equation, and unit	1.5		
	Strain – definition, equation, has no unit	1.5	3	
9	Atmospheric pressure as the weight of the air column	1		
	Atmospheric pressure decreases with altitude	1		
	Value of atmospheric pressure at sea level	1	3	
	Or any three relevant points	,		
10	Terminal velocity – definition	2		
TIT	Stoke's equation, $F = 6\pi\eta rv$	1	3	
III	PART C			42
1	$a_{mean} = 3.7$	1		12
	$\Delta a_{mean} = 0.12$	3		
	$Relative\ error = \frac{0.12}{3.7} = 0.0324$	2	7	,
	Percentage error = 3.24 %	1		
2	Statement of the law of conservation of momentum	1		
	Figure and description	1		
	Applying Newton's second law to derive the equations for			
	action and reaction forces		7	
	Applying newton's third law to get the final result	3		
3		2		1 5-
	Role of centripetal force in banking of roads	4		
	$\theta = tan^{-1} \left\{ \frac{v^2}{rg} \right\}$	1	7	
	$\theta = tan^{-1} \left\{ \frac{15^2}{50 \times 9.8} \right\} = tan^{-1} (0.4592) = 24.66^{\circ}$	2		

	Definition of moment of inertia		1		
	Statement of parallel axes theorem + figure + equation		1 3	7	
5	Statement of perpendicular axes theorem + figure + equation	on 3	3		
	ods system (fundamental quantities and units)	1.	5		_
	MKS system (fundamental quantities and units)	1	5	7	
6	SI system (fundamental quantities and units)	4			
	Torque (definition + equation)	2			
	Angular momentum (definition + equation)	2			
	Statement of the law of conservation of angular momentum	1	7	7	
	Explanation with an example	2			
7	Note on different forms of energy		-		_
- 0	(one mark for each form of energy)	7	7		
8	Static friction – definition, self-adjusting property, limiting friction	2			
	Kinetic friction – definition, properties like independent of velocity and opposite to the direction of motion	2	7		
	Three methods to reduce friction	3			
9	Young's modulus (definition + derivation of equation)	2			-
	Rigidity modulus (definition + derivation of equation)	3	7		
	Bulk modulus (definition + derivation of equation)	2	,		
0	Bernoulli's theorem (statement + figure)	2			1
	Schematic diagram of the atomizer and its description	2	7		
	Working of atomizer	3	7		

11	Conduction of heat through solids	2		
	Thermal conductivity and derivation of equation	3	7	
	Two practical uses of thermal conductivity	2		
12	Diagram	1		
	Force = Pressure \times area, $F_1 = P_1 A$ and $F_2 = P_2 A$	1		
	$(P_2 - P_1) A = mg$	1	7	
	$(P_2 - P_1) A = \rho g h$	2		
	$P_1 = P_{atm}$, $P_2 = P$, $P = P_{atm} + \rho gh$	2		