S1 - ME, PL, AR

TED (10) – 1003A (REVISION – 2010)

Signature

Reg. No.

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLOGY — MARCH, 2015

APPLIED SCIENCE – I (PHYSICS)

(Common except DCP and CABM)

[*Time* : $1\frac{1}{2}$ hours

.....

(Maximum marks : 50)

PART-A

(Maximum marks : 4)

(Answer the questions in one or two sentences. Each question carries 2 marks.)

Marks

- I (a) Distinguish between fundamental and derived quantities.
 - (b) What is meant by elastic limit?

 $(2 \times 2 = 4)$

4

4

4

4

4

4

PART-B.

(Maximum marks : 16)

(Answer any two full questions. Each question carries 8 marks.)

- II (a) What does banking of curved tracks mean? Explain the theory behind banking.
 - (b) A bullet weighing 40gm is fired from a gun of mass 8kg, with a velocity 400m/s. Find the recoil velocity of the gun. Also calculate the force which will stop the gun in 1 second.

III (a) State Newton's second law of motion. Hence deduce an expression for force.

- (b) Explain rotational kinetic energy. Derive expression for kinetic energy of a rolling disc.
- IV (a) Define radius of gyration. What is its value for a uniform circular disc of mass M and radius R, if the disc is rotating about an axis passing through the centre and perpendicular to its plane?
 - (b) State Hooke's law. Define the three modulus of elasticity.

PART - C

2

(Maximum marks : 30)

(Answer one full question from each unit. Each full question carries 15 marks)

Unit – I

- V (a) In a uniform circular motion, speed is kept constant, but velocity is not constant. Explain.
 - (b) Derive an expression for the maximum height of a projectile. "When the horizontal range is maximum, largest height attained by a projectile is one fourth of the maximum range". Justify.
 - (c) A bullet of mass 20gm is fired with a velocity of 100m/s into a wooden block of mass 0.2kg placed on a frictionless horizontal surface. If the bullet is embedded into the wooden block, calculate the common velocity of the bullet and the wooden block.

OR

VI (a) Write any three methods to reduce friction.

- (b) Derive an expression for the period of a simple pendulum using dimensional analysis.
- (c) A body travels 150m during the 5th second and 90m during the 9th second of its motion. Determine the distance travelled by it in the 12th second.

Unit – II

- VII (a) Define universal gravitational constant. Write its dimensional formula.
 - (b) State and explain parallel axes and perpendicular axes theorems. Using appropriate theorem, determine the moment of inertia of a uniform circular disc about a diameter.
 - (c) Define the term, period of revolution of a satellite. An artificial satellite revolves round the earth at a height 6600km from the surface of earth. Calculate its period of revolution. (Radius of the earth = 6400km; gravitational constant, $G = 6.67 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2}$; mass of the earth = $6 \times 10^{24} \text{ kg}$).

OR

VIII (a) Define torque. Write the relation between torque and angular momentum.

- (b) What are geostationary satellites? Deduce its orbital velocity. (Acceleration due to gravity, $g = 9.8 \text{m/s}^2$; Radius of the earth = 6400km; h = 36000km)
- (c) A metal wire of length 1.6m has a diameter 2mm. If it produces an elongation of 3mm under a given load, calculate the tension in the wire. (Young's modulus of the material of the wire = 2×10^{11} N/m²).

3

6

6

3

6

6

3

6

6

3

6

6