Reg. No.

Signature

FIFTH SEMESTER DIPLOMA EXAMINATION IN POLYMER TECHNOLOGY—OCTOBER, 2012

CHEMICAL ENGINEERING

[Time: 3 hours

Marks

 $(5 \times 2 = 10)$

(Maximum marks: 100)

PART-A

(Maximum marks : 10)

I Answer the following questions in one or two sentences. Each question carries 2 marks.

- 1. State the difference between fundamental and derived units.
- 2. Define molality and normality.
- 3. Define thermal conductivity.
- 4. Write the advantages of mixer settlers.
- 5. Define relative volatility.

TED (10)-5083

(REVISION-2010)

PART-B

(Maximum marks : 30)

1	Т	Answer	anv	five	of	the	fol	lowing
•		1 HIS WOL	uny	Jive	O.	une	101	lowing.

1.	(a)	Define density and specific gravity.	2	
	(b)	Calculate the normality of sodium carbonate and hydrochloric acid using the following data : (i) 2.1 gm of sodium carbonate is dissolved in 250 ml. water.		
		(ii) 18 ml of sodium carbonate solution is neutralised by 20 ml of hydrochloric acid solution.	4	
2.	(a)	Explain Fourier's law of thermal conduction.	3	
	(b)	Estimate the heat loss per m^2 of the surface through a brick wall 0.5 m thick, when the inner surface is at 400 K and the outside surface is at 310 K. (The thermal conductivity of the brick may be taken as 0.7 w/(m.k).	3	
3.	(a)	What is natural convection? Give two examples.	3	
	(b)	Write the classification of individual heat transfer co-efficient.	3	
4.	Dif	ferentiate between gas absorption and distillation.	6	
5.	Explain the working of valve plates for distillation column.			
6.	Explain minimum reflux ratio for distillation.			
7.	Exp	plain simple distillation.	6	

[497]

[P.T.O.

Marks

PART--C

(Maximum marks : 60)

(Answer one full question from each unit. Each question carries 15 marks.)

Unit—I

Ш	(a)	Give the concept of dimensional analysis and explain one of its application.							8	
	(b)	Explain the uses of flow chemical process.	diagrams	and	prepare	one flow	diagram	for	any	7

Or

(a) Explain :

IV

		(i) Various systems of units (ii) Advantages of S.I system	6
	(b)	Calculate the volume corresponds to one gram of Nitrogen at 3 atm pressure and temperature at 600 K.	6
	(c)	Calculate the amount of NaOH required to prepare 500 ml of 2N solution.	3
	1	Unit—II	
v	(a)	Derive an equation of heat flow through thick walled cylinder.	8
	(b)	Derive the quantity of heat flow rate through a plane wall under conduction.	7
		Or	
VI	(a)	Derive an equation of heat transfer through spherical wall.	8
	(b)	Derive the conduction equation through compound resistances in series for composite wall.	7
		Unit—III	
VII	(a)	Explain the working of long tube vertical evaporator and draw the diagram.	8
	(b)	Draw the diagram of horizontal Ballman extractor and explain the working to extract cotton seed oil.	7
		Or	
VIII	(a)	Explain the working of perforated plate tower for continuous counter current extraction.	8
	(b)	Explain the characteristics and types of tower packings in absorption.	7
		UNITIV	
IX	(a)	Explain the working of Bubble cap plate and sieve plate for distillation column.	8
	(b)	Explain batch distillation, draw the distillation unit.	7
		Or	
x	(a)	Explain steam distillation.	8
	(b)) Explain :	
		(i) Liquid flow patterns over tray.	
		(ii) Entrainment.	7